
LLM-FSM: Scaling Large Language Models for Finite-State
Reasoning in RTL Code Generation

Yuheng Wu
Stanford University
Stanford, CA, USA

yuhengwu@stanford.edu

Berk Gokmen
Stanford University
Stanford, CA, USA

bgokmen@stanford.edu

Zhouhua Xie
Stanford University
Stanford, CA, USA

xzh015@stanford.edu

Peijing Li
Stanford University
Stanford, CA, USA
peli@stanford.edu

Caroline Trippel
Stanford University
Stanford, CA, USA

trippel@stanford.edu

Priyanka Raina
Stanford University
Stanford, CA, USA

praina@stanford.edu

Thierry Tambe
Stanford University
Stanford, CA, USA

ttambe@stanford.edu

Abstract
Finite-state reasoning, the ability to understand and implement
state-dependent behavior, is central to hardware design. In this
paper, we present LLM-FSM, a benchmark that evaluates how
well large language models (LLMs) can recover finite-state ma-
chine (FSM) behavior from natural-language specifications and
translate it into correct register transfer-level (RTL) implementa-
tions. Unlike prior specification-to-RTL benchmarks that rely on
manually constructed examples, LLM-FSM is built through a fully
automated pipeline. LLM-FSM first constructs FSM with config-
urable state counts and constrained transition structures. It then
prompts LLMs to express each FSM in a structured YAML format
with an application context, and to further convert that YAML into
a natural-language (NL) specification. From the same YAML, our
pipeline synthesizes the reference RTL and testbench in a correct-
by-construction manner. All 1,000 problems are verified using LLM-
based and SAT-solver-based checks, with human review on a subset.
Our experiments show that even the strongest LLMs exhibit sharply
declining accuracy as FSM complexity increases. We further demon-
strate that increasing test-time compute improves performance on
this task, and that LLM-FSM remains extensible by allowing its
FSM complexity to scale with future model capabilities.

1 Introduction
Large language models (LLMs) have demonstrated strong reason-
ing capabilities in tasks such as math problem solving and code
generation [13]. Recently, there has been growing interest in ap-
plying LLMs to assist electronic design automation (EDA) tasks
[9, 36]. A representative example is register transfer-level (RTL)
code generation, where a model receives a natural-language (NL)
design specification and generates the corresponding implementa-
tion [16, 19, 20, 26]. NL is the default interface in LLM-based design
workflows, since users describe intended behavior in NL rather than
formal specification formats. To improve the performance of LLMs
on such NL specification-to-RTL tasks, researchers have explored
techniques such as supervised fine-tuning (SFT) [17], reinforcement
learning (RL) [42], and multi-agent collaboration [51]. All these ap-
proaches can be viewed through the lens of scaling, which broadly
refers to allocating more computation, during training or inference,
to enhance a model’s RTL reasoning performance.

In evaluating LLMs’ ability to generate RTL, an important com-
ponent is their finite-state reasoning capability, which refers to

the ability to understand and implement state-dependent behav-
ior. This capability underlies a wide range of hardware workflows,
including controllers, protocols, and multi-cycle sequencing logic.
However, there is no benchmark designed specifically to evalu-
ate LLMs on finite-state reasoning. Existing specification-to-RTL
datasets [16, 19, 20, 26–28] contain only a small number of such
tasks, and each example requires domain experts to manually write
the specification, reference RTL, and testbench, making them dif-
ficult to scale. Therefore, our research question is: How can we
automatically create a large and scalable NL specification-to-RTL
benchmark that evaluates LLMs on finite-state reasoning?

In this paper, we present LLM-FSM, a large-scale NL specification-
to-RTL benchmark designed to evaluate finite-state reasoning in
LLMs. Unlike existing benchmarks that rely onmanual construction,
our approach fully automates the dataset curation process. The
resulting benchmark is both scalable and controllable, enabling
new problems to be generated at configurable levels of finite-state
machine (FSM) complexity. All reference RTL implementations
and testbenches are produced in a correct-by-construction manner.
The dataset contains problems spanning diverse and realistic finite-
state reasoning scenarios, providing a challenging and extensible
benchmark for evaluating LLM-based RTL generation.

As illustrated in Figure 1, the data curation process begins by
sampling an abstract FSM graph based solely on the specified
number of states and a set of structural constraints. These con-
straints ensure that all states are reachable from reset, transitions
form a connected directed graph, and the out-degree and back-edge
probabilities lie within prescribed bounds. This graph encodes only
the topology of the machine and carries no application-level mean-
ing. An LLM then interprets this abstract graph and generates an
application context consistent with its transition structure, assign-
ing semantic roles to each state and defining the inputs, outputs,
and conditions associated with each transition. This FSM descrip-
tion is stored in a structured FSM YAML format. We check that
the FSM YAML representation is isomorphic to the original abstract
graph and discard any samples that fail this check. Using the fsm2sv
[3] tool, we translate the full FSM YAML into a SystemVerilog im-
plementation. We additionally design a generator that constructs
a testbench by systematically traversing the transitions encoded
in the FSM YAML. Together, these steps yield the reference RTL
implementation and its corresponding testbench.

In the next stage, we use an LLM to translate the FSM YAML into
an NL specification that describes the behavior of the machine.
Given the state mappings contained in the YAML, the LLM is then
asked to reconstruct the FSM by converting the specification back
into YAML format. Using the fsm2sv tool once again, we generate
SystemVerilog code from both the reconstructed FSM and the
original FSM. The two designs are then passed to Yosys [47] for
SAT-solver-based equivalence checking to determine whether the
specification preserves the behavior of the original FSM. Specifi-
cations that fail the equivalence check are discarded, and a subset
of the passing specifications undergoes human review to verify
narrative clarity and hardware plausibility of the NL description.

Our curated LLM-FSM dataset contains 1,000 problems, grouped
into three difficulty tiers (easy, medium, and hard) based on state
number and edge complexity. As shown in Figure 2, we evaluate
models under three pipelines: (1) Specification→RTL, which tests
end-to-end Verilog generation; (2) Specification→YAML→RTL,
where the model constructs the FSM in a structured YAML format
and RTL is generated using fsm2sv; and (3) Specification→SystemC,
where the model directly produces SystemC for validation through
SystemC-Verilog co-simulation (Co-Sim). Across these settings, we
evaluate a wide range of frontier models and find that even the
most advanced LLMs struggle on the hard tier of LLM-FSM.

Our results show that LLM-FSM exposes clear limitations of
current LLMs in finite-state reasoning and offers a challenging
benchmark for evaluating future models. We further demonstrate
that test-time scaling yields consistent performance improvements.
In summary, our work makes the following contributions:

• An automatic pipeline that synthesizes scalable RTL bench-
marks, verified through a SAT solver, and designed to evolve
jointly with advances in LLM capabilities;

• A rigorous evaluation across three tool-chain pipelines, demon-
strating that existing models struggle on LLM-FSM and un-
derscoring the benchmark’s challenging nature;

• An analysis of parallel test-time compute, demonstrating that
parallel sampling outperforms serial decoding for finite-state
reasoning.

2 Related Work
In this section, we review related work in three areas: the appli-
cation of LLMs to RTL code generation, existing benchmarks for
evaluating RTL code generation tasks, and recent advances in scal-
ing LLMs to enhance reasoning capabilities.

2.1 LLMs for RTL Code Generation
Researchers have explored using LLMs for hardware code genera-
tion since the rise of LLMs [9, 36]. However, due to the scarcity of
hardware description language (HDL) data compared to high-level
languages such as Python or C++ [35], pretrained models often
perform poorly on hardware-related tasks [18]. To address this
limitation, recent studies have focused on SFT of LLMs on domain-
specific corpora to better adapt them for RTL design and synthesis
[1, 8, 11, 12, 17, 18, 25, 37, 43]. Beyond SFT, some works further
employ RL-based post-training [13, 38, 42] to enhance code correct-
ness. At the inference stage, many approaches design workflows

Table 1: Comparison of RTL code generation benchmarks.
The five dimensions are: (1) Dataset Size: the number of test
instances included in the benchmark; (2) Automated Genera-
tion: the dataset is automatically constructed and scalable; (3)
Difficulty Control: problem difficulty can be adjusted; (4) Re-
alistic Specification: tasks are described in NL specifications;
and (5) Automated Verification: testbenches are automati-
cally generated for validation.

Benchmark
Dataset
Size

Automated
Generation

Difficulty
Control

Realistic
Specification

Automated
Verification

RTLLM v1 [20] 29 ✗ ✗ ✓ ✗

RTLLM v2 [19] 50 ✗ ✗ ✓ ✗

VerilogEval v1 [16] 156 ✗ ✗ ✓ ✗

VerilogEval v2 [26] 156 ✗ ✗ ✓ ✗

ArchXBench [28] 51 ✗ ✓ ✓ ✗

CVDP [27] 783 ✗ ✓ ✓ ✗

LLM-FSM (Ours) 1000 ✓ ✓ ✓ ✓

incorporate execution feedback [34] and leverage multi-agent col-
laboration [24, 50, 51] to further enhance the quality and reliability
of generated RTL code.

Beyond direct RTL code generation, LLMs have also been ex-
plored for higher-level hardware design workflows [31]. Some ap-
proaches first generate high-level languages such as C or Python,
which are then translated into domain-specific representations [4,
15]. In addition, LLMs are increasingly applied to other stages of the
hardware design flow, including testbench generation [5, 21, 29, 30],
formal specification synthesis [33, 48], and temporal logic specifi-
cation generation [10, 22].

2.2 RTL Code Generation Benchmarks
As shown in Table 1, several benchmarks have been developed
to evaluate LLM performance on RTL code generation. Among
them, the two most widely used are RTLLM [19, 20] and Verilo-
gEval [16, 26]. RTLLM contains 50 problems, while VerilogEval
includes 156 tasks covering both combinational logic modules and
FSMs. ArchXBench [28], on the other hand, consists of 51 human-
authored high-level RTL design tasks, such as generating FFT and
CNNmodules. In all these benchmarks, the specifications and corre-
sponding testbenches are manually written, making them difficult
to scale to larger datasets. In addition, RTL-Repo [2] provides a
fill-in-the-blank style task focusing on completing partial RTL code,
and CVDP [27] offers 783 human-written questions covering the
broader RTL design pipeline. Although larger in scale, these datasets
are still manually curated and span diverse tasks such as debugging,
code comprehension, and design analysis, rather than focusing on
specification-to-RTL generation.

2.3 Scaling LLMs for Reasoning
Scaling refers to allocating more computation to enhance the rea-
soning capabilities of LLMs. Such scaling can occur both during
training and at inference time. At the training stage, scaling can be
achieved through RL [13] or by SFT on reasoning traces distilled
from stronger teacher models [14]. These approaches encourage
the model to generate longer and more coherent reasoning chains,
resulting in improved performance on complex reasoning tasks.

Exit

SV
Testbench

Sampling_FSM(phase=2, state=7)

LLM

RST
Phase 1

Entry

Phase 2

0 1 2 3 4 5

Sample Abstract FSM Graph

6 CHECK (addr_ready) SET <busy=1'b1>
State 1 (input) State 2 <output>

Semantic FSM YAML

A Quad-SPI (QSPI) burst-read controller...

Define states and transitions

1 2

34
1 3

24

Original
abs graph

Graph by
FSM YAML

Isomorphism Check

NL Specification

Requirements: once the address becomes
ready, the controller asserts busy = 1 and
performs the required setup...

LLMReconstructed
FSM YAML

LLM

transitions:
 - CHECK_ADDR:
 - (addr_ready), SET
 - <busy = 1'b1>

fsm2sv

SV
Reconstructed

SV
Reference RTL

SAT Solver
Equivalence

Check

: Final
Artifacts

Figure 1: Overview of the LLM-FSM data curation pipeline. The process begins by constructing an abstract FSM graph, followed
by LLM-based specification generation, automatic RTL and testbench synthesis, and isomorphism/equivalence check.

SV
Gen RTL

Testbench
SV

Gen RTL Testbench

Generate
SystemC

Testbench

Specification → RTL Specification → YAML → RTL Specification → SystemC

LLM under
Evaluation

N
L

S
p

ec

Waveform
Matching

Gen

Ref

LLM under
Evaluation

N
L

S
p

ec

Waveform
Matching

FSM YAML

fsm2sv RefGen

LLM under
Evaluation

N
L

S
p

ec

Waveform
Matching

Questa

Co-Sim

Figure 2: Overview of the LLM-FSM evaluation pipeline. An NL specification is processed through three tool-chain settings:
Specification→RTL, Specification→YAML→RTL, and Specification→SystemC. Each model prediction is executed under the
same reference testbench, and correctness is determined by cycle-by-cycle output matching against the reference RTL.

At the inference stage, scaling is commonly referred to as test-
time scaling (TTS). It can be realized by encouraging deeper and
more deliberate reasoning within a single inference path [23, 44].
Alternatively, multi-trace TTS [7, 32, 45, 46] samples multiple can-
didate completions in parallel and selects the best one using either
verifier-based evaluation [39] or voting-based aggregation [40, 41].
Recent studies further integrate search algorithms [6, 49] that inter-
leave generation and selection in a step-by-step manner, refining
the output through iterative exploration and verification.

3 Methods
In this section, we describe how LLM-FSM is constructed and how
models are evaluated on it. We first synthesize abstract FSM topolo-
gies (Section 3.1), enrich them with LLM-generated semantics (Sec-
tion 3.2), and compile them into RTL and testbenches (Section 3.3),
validating consistency through SAT-based equivalence (Section 3.4).
We then present dataset statistics, human validation, and the evalu-
ation pipelines used to assess model performance (Sections 3.5–3.7).

3.1 Abstract FSM Graph Construction
Phase-based abstract graph structure. We represent each FSM

using a two-level structure organized into phases. A phase corre-
sponds to a coherent stage of operation, such as initialization, data
transfer, or error handling. Each phase is a subgraph with a single
entry and exit, and all internal states lie on paths between them.
Phase transitions are modeled by directed edges from the exit of
one phase to the entry of another, allowing the abstract graph to
capture high-level control flow.

Topology generation algorithm. For each phase, we generate a
minimal chain from entry to exit to ensure reachability, then add
forward branches, back edges, and self-loops under user-controlled
probabilities while capping the out degree. We add a reset block and
connect phases in a simple cycle to guarantee global reachability.
This ensures that every sampled abstract FSM is structurally valid.
Additional inter-phase edges are sampled to create jumps between
phases. This procedure produces an abstract FSM graph whose
structure is determined by a small set of topology parameters.

Example. Figure 3 shows an example with two phases. Each
phase contains an entry–exit chainwith additional forward branches,
back edges, and self-loops sampled under the specified probabili-
ties, while graph-level edges form a cycle that guarantees global
reachability. This two-level organization is intentional: real hard-
ware controllers typically consist of several semantically coherent
phases assembled into a larger control graph. Directly sampling
an unconstrained flat FSM makes it difficult for an LLM to assign
meaningful roles to states or to construct realistic hardware scenar-
ios. By generating topology at both the phase level and the graph
level, we obtain abstract FSMs that are structurally rich yet still
amenable to consistent semantic interpretation.

3.2 Semantic FSM Generation and YAML
Construction

LLM-based semantic FSM generation. As shown in Figure 3, given
an abstract FSM graph from Section 3.1, we use an LLM to turn
this purely structural object into a semantic FSM. The prompt ex-
poses the phase structure, the exact edge list, and asks the model to

RST
Phase 1

Entry Exit

Phase 2

0 1 2 3 4 5

Abstract FSM Graph

6

Semantic FSM Graph
Phase 1: Command Setup
POWERUP_SANITY (0) → MODE_CHECK (1) →
SET_QUAD_MODE (2) → ISSUE_READ_CMD (3)
Phase 2: Burst Transfer
CHECK_WINDOW (4) → BURST_FETCH (5) →
DRAIN_AND_DECIDE (6) → loop

Semantic FSM YAML

transitions:
 - POWERUP_SANITY:
 - (rd_req), MODE_CHECK
 - POWERUP_SANITY

 - MODE_CHECK:
 - (addr_ready && need_qe),
SET_QUAD_MODE
 - (addr_ready && !need_qe),
ISSUE_READ_CMD
 - MODE_CHECK
 - <session_busy = 1'b1>

NL Specification

The design implements a Quad-SPI (QSPI) burst-read controller
for NOR flash devices. Its behavior must satisfy the following
requirements:

1. After reset, the controller stays idle until the host asserts a
read request (rd_req = 1), at which point it enters the mode-
validation phase.
2. In mode validation, once the address becomes ready
(addr_ready = 1), the controller asserts session_busy = 1 and
either performs QE configuration if required (need_qe = 1) or
proceeds directly to issuing the read command if not (need_qe =
0)...

Background

Requirements

Figure 3: An example illustrating the generation process. The abstract graph is first sampled topologically, and an LLM then
assigns semantics, here producing a Quad-SPI burst-read controller for a NOR-flash device.

choose a realistic hardware scenario, assign descriptive names to
all states, and design input and output signals. The model then pro-
duces an fsm2sv-compatible semantic FSM YAML file that specifies
reset behavior, input and output declarations, and for each state,
a list of guarded transitions and outputs that follow the provided
connectivity. In addition to the YAML, the model also generates a
short story of the workflow.

Graph isomorphism verification. As shown in Figure 1, let𝐺abs =

(𝑉 , 𝐸) denote the abstract FSM graph and let 𝐺yaml = (𝑉 , 𝐸) be the
graph obtained from the transitions in the generated YAML. The
state mapping produced by the LLM defines a candidate bijection
𝑓 : 𝑉 → 𝑉 , and we require

(𝑢, 𝑣) ∈ 𝐸 ⇐⇒ (𝑓 (𝑢), 𝑓 (𝑣)) ∈ 𝐸

for all 𝑢, 𝑣 ∈ 𝑉 . Any YAML instance that violates this isomorphism
condition is discarded, so the retained semantic FSMs add meaning
while preserving the original topology.

3.3 Reference RTL and Testbench Generation
Reference RTL. Given a checked semantic FSM YAML, the refer-

ence implementation is generated automatically using the fsm2sv
tool, as shown in Figure 1. Because the YAML format fully specifies
each state, its outputs, and the ordered conditional transitions, the
translation to synthesizable SystemVerilog is mechanical: every
YAML transition becomes a guarded branch in the always_comb
block, and state encodings are assigned in a consistent one-hot or
counter style. Since the YAML itself has already passed the topology-
preserving isomorphism check, the resulting RTL is correct-by-
construction relative to the input FSM.

Testbench generation. The fsm2sv package does not include a
testbench generator, so we extend the tool with a testbench syn-
thesis module. The key requirement is to produce a set of input
sequences that covers all states and all transitions of the FSM. Let
the FSM be a directed graph 𝐺 = (𝑉 , 𝐸) with initial state 𝑠0. For
every edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸, the generator performs:

find a path 𝑠0 { 𝑢, emit inputs that satisfy the guard of 𝑒.

This guarantees that each transition is exercised at least once. The
generator runs in polynomial time in the size of the FSM. It also

emits additional random stimuli to improve robustness. The result-
ing testbench is a self-contained module that instantiates the DUT,
drives the generated input sequences cycle by cycle, and records
waveforms for debugging.

3.4 Specification Generation and Formal
Verification

NL specification synthesis. As shown in Figure 1, given a topology-
verified YAML FSM Y, we first ask an LLM to produce an NL
specification Σ = (ΣIO, Σreq). The prompt exposes only the input-
s/outputs, reset configuration, and transition table, and requires:
(1) an Inputs and Outputs section (ΣIO) that lists every signal us-
ing the exact YAML names; and (2) a Requirements section (Σreq)
that paraphrases each group of transitions into requirements. This
defines a forward map 𝐹 : Y → Σ that hides state names but keeps
the transition semantics.

To check that the specification is semantically complete, we per-
form a second LLM pass that reconstructs a fsm2sv-compatible
YAML Ỹ from Σ and the state mapping. Invalid or structurally in-
consistent reconstructions are discarded, leaving only pairs (Y, Ỹ)
where both directions Y 𝐹−→ Σ

𝐺−→ Ỹ succeed.

SAT-based equivalence checking. For each structurally correct
pair (Y, Ỹ), we compile both YAML files with fsm2sv to produce
two RTL machines with identical I/O interfaces:

M = (𝑆, 𝑠0, 𝐼 ,𝑂, 𝛿, 𝜆), M̃ = (𝑆, 𝑠̃0, 𝐼 ,𝑂, 𝛿, 𝜆).

To check whether the NL specification preserves the behav-
ior of the original FSM, we use Yosys’s equivalence-checking flow
(equiv_make, equiv_simple, equiv_struct, equiv_status). This
constructs a sequential miter between the two RTL designs and
searches for an input sequence under which their outputs diverge.

Formally, let the two machines process the same input sequence
(𝑥0, . . . , 𝑥𝑇). A mismatch at time 𝑡 is recorded as

𝑑𝑡 =
(
𝜆(𝑠𝑡 , 𝑥𝑡) ≠ 𝜆 (̃𝑠𝑡 , 𝑥𝑡)

)
, 𝐷 =

∨
𝑡≤𝑇

𝑑𝑡 .

The solver asks whether some reachable execution can produce
𝐷 = 1. If a counterexample trace is found, the sample is discarded. If
Yosys completes the check without reporting a mismatch, we accept

Table 2: LLM-FSM dataset statistics. Tasks are grouped into
three difficulty tiers based on total state count. For each tier,
we report dataset size, complexity measures, specification
word count, and reference RTL code lines.

Tier Count States Avg.
Edges

Avg.
Phases

Avg. Spec.
Word Count

Avg. Ref.
Code Lines

Low 334 4–14 11.95 2.71 922.3 154.8
Medium 333 14–27 32.17 5.24 1380.4 301.8
High 333 27–59 65.39 8.83 1957.6 501.3

Overall 1000 4–59 36.48 5.59 1419.6 319.1

the pair as behaviorally equivalent for all executions explored by the
checker. Only examples that pass this equivalence check are kept.
This round-trip filter ensures that the NL specification is consistent
with the transition semantics encoded in the original YAML FSM.

3.5 Data Curation Dynamics
Our curated LLM-FSM benchmark contains 1,000 problems, parti-
tioned into three difficulty tiers based on the number of FSM states.
Summary statistics are provided in Table 2.

Generation runtime. All semantic FSMs and NL specifications
are generated using gpt-5 through the OpenAI API. The entire
generation stage completes quickly under batch parallelism. The
dominant computational cost lies in verification: running Yosys’s
equivalence check on a single FSM typically takes ∼ 30 seconds,
making formal checking the primary bottleneck of the pipeline.

Filtering statistics. Our pipeline applies two filters: an isomor-
phism check between the abstract graph and the LLM-generated
YAML, and a equivalence check between the reference and recon-
structed RTL. Out of 1,500 generated candidates, 1,411 (94.1%) pass
the isomorphism test, and 1,085 (76.9%) also pass RTL equivalence.
Equivalence-check pass rates decrease with FSM size (95.7%, 82.1%,
62.4% across the three tiers), but remain sufficiently high to scale
further by increasing generation budget or adopting hierarchical
generation for larger FSMs. We randomly select 1,000 verified ex-
amples to form the final LLM-FSM dataset.

3.6 Human Check
To further ensure data quality, we perform a manual audit on a
subset of examples. Each sampled instance is examined along four
criteria: (1) State Coverage: the specification must describe every
YAML state with no missing or spurious behaviors. (2) Transition
Coverage: every YAML transition must be reflected in the specifica-
tion, with no extra or altered edges. (3) Specification-FSM Alignment:
the narrative must allow an unambiguous mapping from each de-
scribed behavior back to the YAML-specified FSM. (4) Hardware
Plausibility: state names, signal names, and contextual descrip-
tions must form a coherent and realistic hardware scenario. All 20
inspected samples satisfy these criteria, confirming the semantic
consistency between the specification and the underlying FSM.

3.7 Evaluation Pipeline
We evaluate models in three settings. (1) Spec → RTL: the model
generates SystemVerilog directly from the NL specification, and

correctness is determined by cycle-accurate agreement with the ref-
erence RTL under the same testbench. (2) Spec → YAML → RTL:
the model first produces an fsm2sv-compatible YAML FSM, which
is compiled to RTL and evaluated using the same criterion. (3) Spec
→ SystemC: the model outputs a SystemC design, which we test
via SystemC–SystemVerilog co-simulation in Questa; correctness
again requires cycle-by-cycle agreement with the reference RTL.

4 Evaluation
4.1 Experimental Setup
In addition to our LLM-FSM benchmark, we also evaluate on two
human-written RTL datasets: VerilogEval v2 [26] and RTLLMv2 [19].
We evaluate a broad set of frontier model families, including gpt-5,
Claude-4.5, Gemini-2.5, grok-4, Qwen-3, DeepSeek-V3.1/R1, and
Llama-4. These models span both proprietary and open-source fam-
ilies and represent current state-of-the-art LLM systems across a
wide range of model sizes. For all models, we set the maximum
output token budget to 16,384. Temperature and top-p follow each
model’s default settings. We report Pass@1 as the primary metric,
counting a sample as correct only if the generated RTL compiles
and passes the reference testbench.

4.2 Main Results
LLM-FSM is a challenging benchmark. As shown in Figure 3,

across 18 frontier models and three evaluation pipelines, the overall
average Pass@1 is only 41.1%. Among all evaluated LLMs, Claude-
4.5-Sonnet achieves the highest score of 80.3%, yet its performance
drops to 65.6% on the hard tier. Because our dataset is generated
through a fully automated pipeline, increasing the number of states
or transitions can produce harder instances, allowing LLM-FSM to
evolve alongside future model improvements.

Different evaluation pipelines lead to sharply different outcomes
across models. For example, Gemini-2.5-Pro attains 70.4% on the
Spec→YAML→RTL task but only 17.9% on the Spec→SystemC
task. Across all evaluated models, the SystemC setting shows the
lowest average performance, suggesting that LLMs are less familiar
with hardware-compatible high-level languages than with RTL. By
contrast, the Spec→RTL and Spec→YAML→RTL pipelines yield
similar average accuracies, indicating that modern LLMs are able
to perform finite-state reasoning directly in RTL without explicitly
reconstructing the FSM structure in YAML.

4.3 Analysis
Scaling trend and difficulty analysis. As shown in Figure 4, within

the same family, models benefit from increasing parameter scale. On
the difficulty axis, accuracy drops sharply as the number of states
and edges increases, with the Spec→SystemC pipeline being the
most sensitive. This confirms that our generation pipeline provides
fine-grained control over task difficulty.

Correlation with human-written benchmarks. To validate that per-
formance on LLM-FSM reflects real-world RTL generation ability,
we comparemodel accuracy on our dataset with two human-written
benchmarks: VerilogEval v2 [26] and RTLLM v2 [19]. As shown
in Table 4, model performance exhibits strong positive correlation
across datasets. Interestingly, both VerilogEval v2 and RTLLM v2

Table 3: Model accuracy (%) across three RTL generation benchmarks: VerilogEval v2 [26], RTLLM v2 [19], and our LLM-FSM
dataset. For each evaluation pipeline, the best-performing model is shown in bold and the second-best is underlined.

Model Verilog RT Spec→ RTL Spec→ YAML→ RTL Spec→ SystemC Avg.Eval LLM Easy Med. Hard Avg. Easy Med. Hard Avg. Easy Med. Hard Avg.

Llama4-Scout 48.7 36.0 24.0 5.1 0.0 9.7 38.0 4.8 0.3 14.4 0.0 0.0 0.0 0.0 8.0
Qwen3-4B 39.1 30.0 20.7 3.6 0.6 8.3 27.5 3.6 0.6 10.6 39.5 11.7 2.1 17.8 12.2
Qwen3-8B 53.2 38.0 14.1 5.4 2.7 7.4 44.9 12.9 2.1 20.0 61.4 29.7 5.1 32.1 19.8
gpt-5-nano 72.4 54.0 55.4 19.2 4.5 26.4 29.9 5.4 0.6 12.0 58.7 20.4 3.3 27.5 22.0
Llama4-Maverick 59.6 50.0 63.2 27.0 6.3 32.2 63.2 24.0 6.6 31.3 35.0 15.0 5.1 18.4 27.3
Qwen3-14B 59.0 42.0 55.4 26.4 9.0 30.3 62.0 23.4 4.8 30.1 63.5 24.6 10.2 32.8 31.1
gpt-oss-20B 46.8 42.0 61.1 34.8 13.5 36.5 45.8 15.6 3.3 21.6 73.4 37.2 9.3 40.0 32.7
gpt-oss-120B 53.8 44.0 77.5 45.6 19.8 47.7 48.5 26.7 8.7 28.0 74.6 44.7 16.8 45.4 40.4
Qwen3-32B 64.7 52.0 66.5 37.5 14.4 39.5 77.2 41.1 13.5 44.0 68.9 34.2 12.6 38.6 40.7
DeepSeek-R1-0528 72.4 58.0 64.7 41.4 10.8 39.0 68.3 46.5 24.0 46.3 68.0 45.0 4.2 39.1 41.5
Gemini-2.5-Flash 60.3 56.0 76.0 55.9 16.5 49.5 86.5 67.0 44.1 65.9 57.8 8.7 0.0 22.2 45.9
DeepSeek-V3.1-Terminus 69.9 50.0 80.2 54.7 9.0 48.0 75.4 52.0 24.9 50.8 79.9 46.8 1.8 42.9 47.2
Gemini-2.5-Pro 77.6 60.0 77.5 59.8 39.6 59.0 87.4 68.2 55.6 70.4 46.1 7.5 0.0 17.9 49.1
grok-4-fast-reasoning 74.4 58.0 75.1 48.6 37.8 53.9 78.1 50.5 40.8 56.5 74.0 52.6 39.9 55.5 55.5
gpt-5-mini 78.2 54.0 88.6 64.6 41.7 65.0 66.8 36.0 21.6 41.5 84.4 60.1 38.7 61.1 55.9
Claude-4.5-Haiku 75.0 54.0 84.7 53.2 30.9 56.3 86.5 55.3 33.9 58.6 82.3 54.7 27.9 55.0 56.6
gpt-5 86.2 64.0 93.1 79.6 59.8 77.5 93.7 76.6 65.8 78.7 82.0 73.3 55.0 70.1 75.4
Claude-4.5-Sonnet 82.1 64.0 95.5 79.3 70.0 81.6 94.0 83.2 72.1 83.1 93.4 80.8 54.7 76.3 80.3

Average 65.2 50.3 65.2 41.2 21.5 42.6 65.2 38.5 23.5 42.3 63.5 35.9 15.9 38.5 41.1

22 23 24 25 26 27 28 29

Model Size (B parameters)

10

20

30

40

Ac
cu

ra
cy

 (
%

)

Scaling Model Size on LLM-FSM

Llama-4
Qwen-3
gpt-oss

7 14 21 28 35 42 49 56
Total States

10

20

30

40

50

60

70

Av
er

ag
e

Ac
cu

ra
cy

 (
%

)

Difficulty Analysis

Spec RTL
Spec YAML RTL
Spec SystemC

20

40

60

80

100

Av
er

ag
e

Ed
ge

s

Figure 4: Scaling and difficulty analysis on LLM-FSM. Left:
scaling behavior of different model families. Right: accuracy
averaged across all models within each difficulty bin.

Table 4: Correlation between performance on our bench-
mark and human-written datasets. Pipeline 1: Spec→RTL,
Pipeline 2: Spec→YAML→RTL, Pipeline 3: Spec→SystemC.
We report Pearson (P) and Spearman (S) correlations.

Dataset Pipeline 1 Pipeline 2 Pipeline 3 Overall Avg.
P S P S P S P S

VerilogEval 0.82 0.85 0.78 0.78 0.66 0.62 0.83 0.87
RTLLM 0.85 0.82 0.85 0.85 0.59 0.52 0.84 0.83

primarily evaluate the direct Spec→RTL generation path, and we
observe that correlations are indeed highest for our Pipeline 1
results, further suggesting that LLM-FSM captures the same under-
lying reasoning skills required for hand-written RTL benchmarks.

Error analysis. We manually analyze a subset of incorrect gener-
ations and identify four common failure modes. (1) Syntax errors:
models occasionally include invalid syntax in generated RTL code

1 2 3 4 5 6 7 8 9 10111213141516
Number of Samples (k)

0

20

40

60

80

100

Av
er

ag
e

pa
ss

@
k

(%
)

Multi-Trace Test-Time Scaling
Qwen3-32B
gpt-oss-20B
Qwen3-14B

Qwen3-8B
Qwen3-4B

Qwen3-4B Qwen3-8B Qwen3-14B
Models

0

10

20

30

40

50

Ac
cu

ra
cy

 (
%

)

Single-Trace vs Multi-Trace TTS

Baseline result
Single-trace TTS (pass@1)
Multi-trace TTS (pass@16)

Figure 5: TTS for finite-state reasoning. Left: multi-trace TTS
pass@k scaling on LLM-FSM. Right: comparison of single-
trace TTS vs multi-trace TTS at 𝑘 = 16.

that fails to compile. (2) Incorrect timing semantics: the implemen-
tation violates cycle-level behavior described in the specification,
such as transitioning out of a state earlier or later than required. (3)
State or transition mistakes: the generated code introduces missing,
extra, or reordered edges, resulting in an FSM whose structure dif-
fers from the intended one. (4) Formatting errors: tasks involving
YAML or SystemC templates often fail because the model does
not precisely follow the required schema, leading to invalid FSM
descriptions or modules that cannot be parsed.

4.4 Scaling LLMs for Finite-State Reasoning
TTS for Finite-State Reasoning. As shown in Figure 5 (left), in-

creasing the number of samples per question in our multi-trace
TTS setting steadily improves each model’s pass@k on LLM-FSM.
However, simply letting models think before answering (single-
trace TTS) is less effective: Figure 5 (right) shows that Qwen3-14B’s
pass@1 in thinking mode remains well below its own pass@16
under multi-trace TTS, with smaller models showing the same gap.

5 Conclusion
In this paper, we introduce LLM-FSM, a scalable benchmark for
translating NL specifications to RTL. The dataset explicitly tar-
gets finite-state reasoning, provides fine-grained difficulty control,
and checks consistency between each specification and its RTL
implementation through SAT-based verification. Evaluating a wide
range of LLMs on 1,000 problems, we find that current models still
struggle with temporally precise RTL synthesis. Performance on
LLM-FSM also correlates with results on human-written RTL bench-
marks, indicating that it captures real-world design challenges. We
further show that multi-trace TTS boosts model performance on
LLM-FSM. Overall, LLM-FSM provides a scalable foundation for
evaluating and advancing finite-state reasoning in LLM-based RTL
generation.

References
[1] MohammadAkyash, Kimia Azar, andHadi Kamali. 2025. RTL++: Graph-enhanced

LLM for RTL Code Generation. ICLAD (2025).
[2] Ahmed Allam and Mohamed Shalan. 2024. RTL-Repo: A Benchmark for Evaluat-

ing LLMs on Large-Scale RTL Design Projects. LAD Workshop (2024).
[3] Mohamed Bamakhrama. 2021. fsm2sv: SystemVerilog FSM Generator. GitHub

(2021).
[4] Christopher Batten, Nathaniel Pinckney, Mingjie Liu, Haoxing Ren, and Brucek

Khailany. 2024. PyHDL-Eval: An LLM Evaluation Framework for Hardware
Design Using Python-Embedded DSLs. MLCAD (2024).

[5] Jitendra Bhandari, Johann Knechtel, Ramesh Narayanaswamy, Siddharth Garg,
and Ramesh Karri. 2024. LLM-Aided Testbench Generation and Bug Detection
for Finite-State Machines. Arxiv (2024).

[6] Zhenni Bi, Kai Han, Chuanjian Liu, Yehui Tang, and Yunhe Wang. 2025. Forest-
of-Thought: Scaling Test-Time Compute for Enhancing LLM Reasoning. ICML
(2025).

[7] Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christo-
pher Ré, and Azalia Mirhoseini. 2024. Large LanguageMonkeys: Scaling Inference
Compute with Repeated Sampling. Arxiv (2024).

[8] Paul E. Calzada, Zahin Ibnat, Tanvir Rahman, Kamal Kandula, Danyu Lu, Su-
jan Kumar Saha, Farimah Farahmandi, and Mark Tehranipoor. 2025. VerilogDB:
The Largest, Highest-Quality Dataset with a Preprocessing Framework for LLM-
based RTL Generation. Arxiv (2025).

[9] Kaiyan Chang, Ying Wang, Haimeng Ren, Mengdi Wang, Shengwen Liang, Yinhe
Han, Huawei Li, and Xiaowei Li. 2023. ChipGPT: How far are we from natural
language hardware design. NeurIPS SysML Workshop (2023).

[10] Matthias Cosler, Christopher Hahn, Daniel Mendoza, Frederik Schmitt, and
Caroline Trippel. 2023. nl2spec: Interactively Translating Unstructured Natural
Language to Temporal Logics with Large Language Models. CAV (2023).

[11] Fan Cui, Chenyang Yin, Kexing Zhou, Youwei Xiao, Guangyu Sun, Qiang Xu,
Qipeng Guo, Yun Liang, Xingcheng Zhang, Demin Song, and Dahua Lin. 2024.
OriGen: Enhancing RTL Code Generation with Code-to-Code Augmentation and
Self-Reflection. ICCAD (2024).

[12] Chenhui Deng, Yun-Da Tsai, Guan-Ting Liu, Zhongzhi Yu, and Haoxing Ren.
2025. ScaleRTL: Scaling LLMs with Reasoning Data and Test-Time Compute for
Accurate RTL Code Generation. MLCAD (2025).

[13] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Peiyi Wang, Qihao Zhu,
Runxin Xu, Ruoyu Zhang, Shirong Ma, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu
Wu, Z. F. Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, ...,
and Zhen Zhang. 2025. DeepSeek-R1 incentivizes reasoning in LLMs through
reinforcement learning. Nature (2025).

[14] Dacheng Li, Shiyi Cao, Tyler Griggs, Shu Liu, Xiangxi Mo, Eric Tang, Sumanth
Hegde, KouroshHakhamaneshi, Shishir G Patil, Matei Zaharia, Joseph EGonzalez,
and Ion Stoica. 2025. LLMs Can Easily Learn to Reason from Demonstrations
Structure, not content, is what matters! Arxiv (2025).

[15] Yuchao Liao, Tosiron Adegbija, and Roman Lysecky. 2024. Are LLMs Any Good
for High-Level Synthesis? ICCAD (2024).

[16] Mingjie Liu, Nathaniel Pinckney, Brucek Khailany, and Haoxing Ren. 2023. Verilo-
gEval: Evaluating Large Language Models for Verilog Code Generation. ICCAD
(2023).

[17] Mingjie Liu, Yun-Da Tsai, Wenfei Zhou, and Haoxing Ren. 2025. CraftRTL:
High-quality Synthetic Data Generation for Verilog Code Models with Correct-
by-Construction Non-Textual Representations and Targeted Code Repair. ICLR
(2025).

[18] Shang Liu, Wenji Fang, Yao Lu, Qijun Zhang, Hongce Zhang, and Zhiyao Xie.
2024. RTLCoder: Outperforming GPT-3.5 in Design RTL Generation with Our

Open-Source Dataset and Lightweight Solution. LAD Workshop (2024).
[19] Shang Liu, Yao Lu, Wenji Fang, Mengming Li, and Zhiyao Xie. 2024. OpenLLM-

RTL: Open Dataset and Benchmark for LLM-Aided Design RTL Generation.
ICCAD (2024).

[20] Yao Lu, Shang Liu, Qijun Zhang, and Zhiyao Xie. 2024. RTLLM: An Open-Source
Benchmark for Design RTL Generation with Large Language Model. ASP-DAC
(2024).

[21] Ruiyang Ma, Yuxin Yang, Ziqian Liu, Jiaxi Zhang, Min Li, Junhua Huang, and
Guojie Luo. 2024. VerilogReader: LLM-Aided Hardware Test Generation. LAD
Workshop (2024).

[22] Daniel Mendoza, Christopher Hahn, and Caroline Trippel. 2024. Translating
Natural Language to Temporal Logics with Large Language Models and Model
Checkers. FMCAD (2024).

[23] Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh
Hajishirzi, Luke Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori
Hashimoto. 2025. s1: Simple test-time scaling. EMNLP (2025).

[24] Bardia Nadimi and Hao Zheng. 2024. A Multi-Expert Large Language Model
Architecture for Verilog Code Generation. LAD Workshop (2024).

[25] Zehua Pei, Hui-Ling Zhen, Mingxuan Yuan, Yu Huang, and Bei Yu. 2024. BetterV:
Controlled Verilog Generation with Discriminative Guidance. ICML (2024).

[26] Nathaniel Pinckney, Christopher Batten, Mingjie Liu, Haoxing Ren, and Brucek
Khailany. 2025. Revisiting VerilogEval: A Year of Improvements in Large-
Language Models for Hardware Code Generation. TODAES (2025).

[27] Nathaniel Pinckney, Chenhui Deng, Chia-Tung Ho, Yun-Da Tsai, Mingjie Liu,
Wenfei Zhou, Brucek Khailany, and Haoxing Ren. 2025. Comprehensive Verilog
Design Problems: A Next-Generation Benchmark Dataset for Evaluating Large
Language Models and Agents on RTL Design and Verification. Arxiv (2025).

[28] Suresh Purini, Siddhant Garg, Mudit Gaur, Sankalp Bhat, Sohan Mupparapu, and
Arun Ravindran. 2025. ArchXBench: A Complex Digital Systems Benchmark
Suite for LLM Driven RTL Synthesis. MLCAD (2025).

[29] Ruidi Qiu, Grace Zhang, Rolf Drechsler, Ulf Schlichtmann, and Bing Li. 2025.
CorrectBench: Automatic Testbench Generation with Functional Self-Correction
using LLMs for HDL Design. DATE (2025).

[30] Ruidi Qiu, Grace Li Zhang, Rolf Drechsler, Ulf Schlichtmann, and Bing Li. 2024.
AutoBench: Automatic Testbench Generation and Evaluation Using LLMs for
HDL Design. MLCAD (2024).

[31] Arun Ravindran, Aditya Patra, Vahid Babaey, and Suresh Purini. 2025. Survey and
Benchmarking of Large Language Models for RTL Code Generation: Techniques
and Open Challenges. Preprints (2025).

[32] Charlie Victor Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. 2025. Scaling LLM
Test-Time Compute Optimally Can be More Effective than Scaling Parameters
for Reasoning. ICLR (2025).

[33] Chuyue Sun, Christopher Hahn, and Caroline Trippel. 2023. Towards Improving
Verification Productivity with Circuit-Aware Translation of Natural Language to
SystemVerilog Assertions. CAV Workshop (2023).

[34] Kimia Tasnia, Alexander Garcia, Tasnuva Farheen, and Sazadur Rahman. 2025.
VeriOpt: PPA-Aware High-Quality Verilog Generation via Multi-Role LLMs. Arxiv
(2025).

[35] Kimia Tasnia and Sazadur Rahman. 2025. OPL4GPT: An Application Space
Exploration of Optimal Programming Language for Hardware Design by LLM.
ASP-DAC (2025).

[36] Shailja Thakur, Baleegh Ahmad, Zhenxing Fan, Hammond Pearce, Benjamin Tan,
Ramesh Karri, Brendan Dolan-Gavitt, and Siddharth Garg. 2023. Benchmarking
Large Language Models for Automated Verilog RTL Code Generation. DATE
(2023).

[37] Shailja Thakur, BaleeghAhmad, Hammond Pearce, Benjamin Tan, BrendanDolan-
Gavitt, Ramesh Karri, and Siddharth Garg. 2024. VeriGen: A Large Language
Model for Verilog Code Generation. TODAES (2024).

[38] Ning Wang, Bingkun Yao, Jie Zhou, Xi Wang, Zhe Jiang, and Nan Guan. 2025.
Large Language Model for Verilog Generation with Code-Structure-Guided Rein-
forcement Learning. ICLAD (2025).

[39] Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen,
Yu Wu, and Zhifang Sui. 2024. Math-Shepherd: Verify and Reinforce LLMs
Step-by-step without Human Annotations. ACL (2024).

[40] Weiqin Wang, Yile Wang, and Hui Huang. 2025. Ranked Voting based Self-
Consistency of Large Language Models. ACL Findings (2025).

[41] Xuezhi Wang, JasonWei, Dale Schuurmans, Quoc V Le, Ed H Chi, Sharan Narang,
Aakanksha Chowdhery, and Denny Zhou. 2023. Self-Consistency Improves Chain
of Thought Reasoning in Language Models. ICLR (2023).

[42] Yiting Wang, Guoheng Sun, Wanghao Ye, Gang Qu, and Ang Li. 2025. VeriRea-
son: Reinforcement Learning with Testbench Feedback for Reasoning-Enhanced
Verilog Generation. Arxiv (2025).

[43] AnjiangWei, Huanmi Tan, Tarun Suresh, Daniel Mendoza, Thiago S. F. X. Teixeira,
Ke Wang, Caroline Trippel, and Alex Aiken. 2025. VeriCoder: Enhancing LLM-
Based RTL Code Generation through Functional Correctness Validation. NeurIPS
DL4C Workshop (2025).

[44] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi,
Quoc V Le, Denny Zhou, et al. 2022. Chain-of-thought prompting elicits reasoning

in large language models. NeurIPS (2022).
[45] Yuheng Wu, Azalia Mirhoseini, and Thierry Tambe. 2025. On the Role of Tem-

perature Sampling in Test-Time Scaling. Arxiv (2025).
[46] Yuheng Wu, Jianwen Xie, Denghui Zhang, and Zhaozhuo Xu. 2025. DEL-ToM:

Inference-Time Scaling for Theory-of-Mind Reasoning via Dynamic Epistemic
Logic. EMNLP (2025).

[47] Claire Xenia Wolf. 2020. Equivalence Checking with Yosys. GitHub (2020).
[48] Zhiyuan Yan, Wenji Fang, Mengming Li, Min Li, Shang Liu, Zhiyao Xie, and

Hongce Zhang. 2025. AssertLLM: Generating Hardware Verification Assertions

from Design Specifications via Multi-LLMs. ASP-DAC (2025).
[49] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and

Karthik Narasimhan. 2023. Tree of thoughts: Deliberate problem solving with
large language models. NeurIPS (2023).

[50] Zhongzhi Yu, Mingjie Liu, Michael Zimmer, Yingyan Celine Lin, Yong Liu, and
Haoxing Ren. 2025. Spec2RTL-Agent: Automated Hardware Code Generation
from Complex Specifications Using LLM Agent Systems. Arxiv (2025).

[51] Yujie Zhao, Hejia Zhang, Hanxian Huang, Zhongming Yu, and Jishen Zhao. 2025.
MAGE: A Multi-Agent Engine for Automated RTL Code Generation. DAC (2025).

	Abstract
	1 Introduction
	2 Related Work
	2.1 LLMs for RTL Code Generation
	2.2 RTL Code Generation Benchmarks
	2.3 Scaling LLMs for Reasoning

	3 Methods
	3.1 Abstract FSM Graph Construction
	3.2 Semantic FSM Generation and YAML Construction
	3.3 Reference RTL and Testbench Generation
	3.4 Specification Generation and Formal Verification
	3.5 Data Curation Dynamics
	3.6 Human Check
	3.7 Evaluation Pipeline

	4 Evaluation
	4.1 Experimental Setup
	4.2 Main Results
	4.3 Analysis
	4.4 Scaling LLMs for Finite-State Reasoning

	5 Conclusion
	References

